Operator Overloading

When Java was created, the concept of operator overloading was already present in C++. I would say that it was generally well done in C++, but it kind of breaks the object oriented polymorphism patterns of C++ and the usual way was to have several overloaded functions to allow for all n² combinations.

In the early days of C++ people jumped on this feature and used it for all kinds of stuff that has nothing to do with the original concept of numeric operators, like adding dialog boxes to strings and multiplying that with events. We get somewhere a little bit towards what APL was, which had only operators and a special charset to allow for all the language features, requiring even a special keyboard:

APL example

APL example


You can find an article in Scott Locklin’s Blog about APL and other almost forgotten languages and the potential loss of some achievements that they tried to bring to us.

We see the same with some people in Scala who create a lot of operators using interesting Unicode characters. This is not necessarily wrong, but I think operators should only be used for something that is really important. Not in the sense: „I wrote functionality XYZ for library UVW, and this is really important“, but in the sense that this functionality is so commonly used that people have no problem remembering the operator. Or the operator is already known to us, like „+“, „-„, „*“, … for numeric types, but I still have no idea what adding a string to an event would mean.

In C++ it got even worse because it was possible to overload „->“ or new and thus digging deep into the language, which can be interesting when used carefully and skillfully by developers who really know what they are doing, but disastrous otherwise.

Now Java has opted not to support this operator overloading, which was wrong in even at that time, but understandable, because at that time we were still more in the mindset to count bits and live with the deficiencies of int and long and we ware also seeing the weird abuses of operator overloading in C++. Maybe it was also the lack of time to design a sound mechanism for this in Java. Unfortunately this decision that was made in a context more than 20 years ago has kind of become religious. Interestingly James Gosling, when asked in an interview for the 20 years anniversary of Java, mentioned operator overloading for numeric types as the first thing that he would have made better. (It is around minute 9.) So I hope that this undoes the religious aspect of this topic.

An interesting idea will probably be included in future versions of Scala. An operator is in principal defined as a method of the left operand, which is quite logical, but it would imply writing something like e = (a.*(b)).+(c.*(d)), possibly with fewer parentheses. Now this is recognized as a operator-method, so the dots can go away as well as the parentheses and the common operator precedence applies, so e = a * b + c * d works as well and is what we find natural. Ruby and Scala are very similar in this aspect. Now some future version of Scala, maybe Scala 3, will introduce an annotation that allows the „infix“-notation for these methods and that adds a descriptive name. Now error messages and even IDE-support could give us access to the descriptive name and we would be able to search for it, while searching for something like „+“ or „-“ or „*“ would not really be helpful. I think that this idea would be useful for other languages as well.

These examples demonstrate the BigInteger types of Java, C#, Scala, Clojure and Ruby, respectively:

import java.math.BigInteger;

public class JavaBigInt {

    public static void main(String[] args) {
        BigInteger f = BigInteger.valueOf(2_000_000_000L);
        BigInteger p = BigInteger.ONE;
        for (int i = 0; i < 8; i++) {
            System.out.println(i + " " +  p);
            p = p.multiply(f);
        }
    }
}

gives this output:

0 1
1 2000000000
2 4000000000000000000
3 8000000000000000000000000000
4 16000000000000000000000000000000000000
5 32000000000000000000000000000000000000000000000
6 64000000000000000000000000000000000000000000000000000000
7 128000000000000000000000000000000000000000000000000000000000000000

And the C#-version

using System;
using System.Numerics;

public class CsInt {

    public static void Main(string[] args) {
        BigInteger f = 2000000000;
        BigInteger p = 1;
        for (int i = 0; i < 8; i++) {
            Console.WriteLine(i + " " +  p);
            p *= f;
        }
    }
}

give exactly the same output:

0 1
1 2000000000
2 4000000000000000000
3 8000000000000000000000000000
4 16000000000000000000000000000000000000
5 32000000000000000000000000000000000000000000000
6 64000000000000000000000000000000000000000000000000000000
7 128000000000000000000000000000000000000000000000000000000000000000

Or the Scala version

object ScalaBigInt {

  def main(args: Array[String]): Unit = {
    val f : BigInt = 2000000000;
    var p : BigInt = 1;
    for (i  <- 0 until 8) {
      println(i + " " + p);
      p *= f;
    }
  }
}
0 1
1 2000000000
2 4000000000000000000
3 8000000000000000000000000000
4 16000000000000000000000000000000000000
5 32000000000000000000000000000000000000000000000
6 64000000000000000000000000000000000000000000000000000000
7 128000000000000000000000000000000000000000000000000000000000000000

Or in Clojure it looks like this, slightly shorter than then Java and C#:

(reduce (fn [x y] (println y x) (*' 2000000000 x)) 1 (range 8))

with the same output again, but a much shorter program. Please observe that the multiplication needs to use the "*'" instead of "*" in order to outexpand from fixed length integers to big-integers.

0 1
1 2000000000
2 4000000000000000000
3 8000000000000000000000000000N
4 16000000000000000000000000000000000000N
5 32000000000000000000000000000000000000000000000N
6 64000000000000000000000000000000000000000000000000000000N
7 128000000000000000000000000000000000000000000000000000000000000000N

Or in Ruby it is also quite short:

f = 2000000000
p = 1
8.times do |i|
  puts "#{i} #{p}"
  p *= f;
end

same result, without any special effort, because integers are always expanding to the needed size:

0 1
1 2000000000
2 4000000000000000000
3 8000000000000000000000000000
4 16000000000000000000000000000000000000
5 32000000000000000000000000000000000000000000000
6 64000000000000000000000000000000000000000000000000000000
7 128000000000000000000000000000000000000000000000000000000000000000

So I suggest to leave the IT-theology behind. So the pragmatic issues should be considered now.

In Java we have primitive numeric types, that are basically inadequate for application development, because they tacitly overflow and because application developers have usually no idea how to deal with rounding issues of float and double. We have good numeric types like BigInteger and BigDecimal to support arbitrarily long integral numbers, which do not overflow unless we exceed memory or addressaility issues with numbers of several billion digits. BigDecimal allows for controlled rounding, and also arbitrary precision.

Now we have to write

e = a.multiply(b).add(c.multiply(d))

instead of

e = a * b + c * d

The latter is readable, it is exactly what we mean. The former is not readable at all and the likelihood of making mistakes is very high.
I would be happy with something like this:

e = a (*) b (+) c (*) d

where overloaded operators are surrounded with () or [] or something like that.

At some point of time a major producer of electronic calculators made us believe that it is more natural to express it like this

e a b * c d * + =

Maybe this way of writing math would be better, but it is not what we do outside of our computers and calculators. At least it was more natural to have this pattern for those who created the calculators, because it was much easier to implement in a clean way on limited hardware. We still have the opposite in Lisp, which is still quite alive as Clojure, so I use the clojure syntax:

(def x (+ (* a b) (* c d)))

which is relatively readable after some learning and allows for a very simple and regular and powerful syntax. But even this is not how we write Math outside of our computer.

Now the good news is that Java will add "value types" in the future and consider to revisit the operator overloading issue for these value types. This may or may not solve the issue in a distant future. We should have an idea what a numeric type is. A numeric type can be more than just real and integral numbers. Just think of rational numbers, complex numbers, but even of polynomials, rational functions (quotients of polynomials), finite fields, p-adic numbers and more. We just need to talk about rings and fields in the mathematical sense and possibly subsets that do not quite follow the field semantics like Double, but that are still inspired by the field they aim to represent. Anyway, for the moment Java not having operator overloading is a degradation from something that other languages had already done well before.

Btw., please use elementary school math skills and do not write

e = (a * b) + (c * d)

That is just noise. I do not recommend to memorize all the 10 to 25 levels of operator precedence of a typical programming languages, but it is good to know the basic ones, that almost any serious current programming language supports:
* binary * /
* binary + -
* == != <= >= < >
* &&
* ||
Some use "and" and "or" instead of "&&" and "||".

Now using overloaded operators should be no problem.

We do have an issue when implementing it.

Imagine you have a language with five built in numeric types. Now you add a sixth one. "+" is probably already defined for 25 combinations. With the sixth type we get a total of 36 combinations, of which we have to provide the missing 11 and a mechanism to dispatch the program flow to these. In C++ we just add 11 operator-functions and that does everything. In Ruby we add a method for the left side of the operator. Now this does not know our new type for the existing types, but it deals with it by calling coerce of the right operand with the left operand as parameter. This is actually powerful enough to deal with this situation.

It gets even more tricky when we use different libraries that do not know of each other and each of them adds numeric types. Possibly we cannot add these with each other or we can do so in a degraded manner by just falling back to double or float or rational or something like that.

The numeric types that we usually use can be added with each other, but we could hit situations where that is not the case, for example when having p-adic numbers, which can be added with rational number, but not with real numbers. Or finite fields, whose members can be added with integral numbers or with numbers of the same field, but not necessarily with numbers of another finite field. Fortunately these issues should occur only to people who understand them while writing libraries. Using the libraries should not be hard, if they are properly done.

Share Button

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.


*