Find the next entry in a sequence

In Facebook, Xing, Google+, Vk.com, Linkedin and other of these social media networks we are often encountered with a trivial question like this:

1->2
2->8
3->18
4->32
5->50
6->72
7->?

There are some easy patterns. Either it is some polynomial formula or some trick with the digits.
But the point is, that any such sequence can easily be fullfilled by a polynomial formula. That means we can put any value for 7 and make it work. Or any answer is correct. So what would probably be the real question is the most simple function to full-fill the given constraints. Simplicity can be measured in some way… If the solution is unique is unclear, but let us just look at the polynomial solution.

A function is needed that takes as parameter a list of key-value-pairs (or a hash map) and that yields a function such that the function of any of the key is the associated value.

Assuming a polynomial function in one variable we can make use of the chinese remainder theorem, which can be applied to univariate polynomials over a field F as well as to integral numbers. For a polynomial p(X) we have

    \[p(x) \equiv p(X) \mod X-x\]

where X is the polynomial variable and x\in F is a concrete value.

We are looking for a polynomial p(X) such that for given values x_0,\ldots x_{n-1}, y_0,\ldots,y_{n-1} \in F we have

    \[\bigwedge_{i=0}^{n-1} p(x_i) = y_i\]

or in another way

    \[\bigwedge_{i=0}^{n-1} p(X) \equiv y_i \mod X-x_i\]

which is exactly the Chinese remainder theorem.
Let

    \[I=\{0,\ldots,n-1\}\]

and

    \[\bigwedge_{j=0}^{n-1} I_j = I \setminus \{j\}\]

We can see that for all i \in I the polynomials

    \[e_i = \prod_{j \in I_j} \frac{X-x_j}{x_i-x_j}\]

have the properties

    \[e_i(x_i)=1\]

    \[\bigwedge_{j \in I_i} e_i(x_j)=0\]

or

    \[\bigwedge_{i \in I}\bigwedge_{j \in J} e_i(x_j)=\delta_{i,j}\]

where \delta_{i,j} is the Kronecker symbol, which is 0 if the two indices differ and 1 if they are equal.
Or as congruence:

    \[\bigwedge_{i \in I}\bigwedge_{j \in J} e_i(X)\equiv \delta_{i,j} \mod X-x_j\]

Then we can just combine this and use

    \[p(X) =\sum_{i \in I} y_i e_i(X)\]

This can easily be written as a Ruby function

def fun_calc(pairs)
  n = pairs.size
  result = lambda do |x|
    y = 0
    n.times do |i|
      p_i = pairs[i]
      x_i = p_i[0].to_r
      y_i = p_i[1].to_r
      z = y_i
      n.times do |j|
        if (j != i)
          p_j = pairs[j]
          x_j = p_j[0]
          z *= (x - x_j) / (x_i - x_j)
        end
      end
      y += z
    end
    y
  end
  result
end

This takes a list of pairs as a parameter and returns the polynomial function als lambda.
It can be used like this:

lop = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 64]]

f = fun_calc(lop)

20.times do |x|
  y = f.call(x)
  puts sprintf("%6d -> %6d", x, y)
end

Put this together into a ruby program and add some parsing for the list of pairs or change the program each time you use it and all these „difficult“ questions „that 99.9% fail to solve“ are not just easy, but actually soluble automatically.

This is interesting for more useful applications. I assume that there will always be situations where a function is needed that meets certain exact values a certain inputs and is an interpolation or extrapolation of this.

Please observe that there are other interesting and useful ways to approach this:

  • Use a „best“ approximation from a set of functions, for example polynomials with a given maximum degree
  • use cubic splines, which are cubic polynomials within each section between two neighboring input values such that at the input values the two adjacent functions have the same value (y_i, of course), the same first derivative and the same second derivative.

For highway and railroad construction other curves are used, because the splines are making an assumption on what is the x-axis and what is the y-axis, which does not make sense for transport facilities. They are using a curve called Clothoid.

Use Java, C, Perl, Scala, F# or the programming language of your choice to do this. You only need Closures, which are available in Java 8, F#, Scala, Perl, Ruby and any decent Lisp dialect. In Java 7 they can be done with an additional interface as anonymous inner classes. And for C it has been described in this blog how to do closures.

Share Button

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

*