When we write APIs, that have parameters or as return values, it is a good idea to consider relying on immutable objects only. This applies also when collections are involved directly or indirectly as content of the classes that occur as return values or parameters. Changing what is given through the API in either direction can create weird side effects. It even causes different behavior, depending on weather the API works locally or via the network, because changes of the parameters are usually not brought back to the caller via some hidden back channel, unless we run locally. I use Java as an example, but it is quite an universal concept and applies to many languages. If we talk about Ruby, for example, the freeze method might be our friend, but it goes only one level deep and we actually want to deep-freeze.. Another story, maybe…
Now we can think of using Java’s own Collections.unmodifiableList and likewise. But that is not really ideal. First of all, these collections can still be modified by just working on the inner of the two collections:
List
list.add("a");
list.add("b");
list.add("c");
List
list.add("d");
ulist.get(3)
-> "d"
Now list in the example above may already come from a source that we don’t really control or know, so it may be modified there, because it is just „in use“. Unless we actually copy the collection and put it into an unmodifiableXXX after that and only retain the unmodifiable variant of it, this is not really a good guarantee against accidental change and weird effects. Let’s not get into the issue, that this is just controlled at runtime and not at compile time. There are languages or even libraries for Java, that would allow to require an immutable List at compile time. While this is natural in languages like Scala, you have to leave the usual space of interfaces in Java, because it is also really a good idea to have the „standard“ interfaces in the APIs. But at least use immutable implementations.
When we copy and wrap, we still get the weird indirection of working through the methods of two classes and carrying around two instances. Normally that is not an issue, but it can be. I find it more elegant to use Guava in these cases and just copy into a natively immutable collection in one step.
For new projects or projects undergoing a major refactoring, I strongly recommend this approach. But it is of course only a good idea, if we still keep our APIs consistent. Doing one of 100 APIs right is not worth an additional inconsistency. It is a matter of taste, to use standard Java interfaces implemented by Guava or Guava interfaces and classes itself for the API. But it should be consistent.
Schreibe einen Kommentar