DB Persistence without UPDATE and DELETE

When exploring the usage of databases for persistence, the easiest case is a database that does only SELECT. We can cache as much as we like and it is more or less the functional immutable world brought to the database. For working on fixed data and analyzing data this can sometimes be useful.

Usually our data actually changes in some way. It has been discussed in this Blog already, that it would be possible to extend the idea of immutability to the database, which would be achieved by allowing only INSERT and SELECT. Since data can correlate, an INSERT in a table that is understood as a sub-entity via a one-to-many-relationship by the application actually is mutating the containing entity. So it is necessary to look at this in terms of the actual OR-mapping of all applications that are running on that DB schema.

Life can be simple, if we actually have self contained data as with MongoDB or by having a JSON-column in PostgreSQL, for example. Then inter-table-relations are eliminated, but of course it is not even following the first normal form. This can be OK or not, but at least there are good reasons why best practices have been introduced in the relational DB world and we should be careful about that. Another approach is to avoid the concept of sub entities and only work with IDs that are foreign keys. We can query them explicitly when needed.

An interesting approach is to have two ID-columns. One is an id, that is unique in the DB-table and increasing for newly created data. One is the entity-ID. This is shared between several records referring to different generations of the same object. New of them are generated each time we change something and persist the changes and in a simple approach we just consider the newest record with that entity-ID valid. It can of course be enhanced with validFrom and validTo. Then each access to the database also includes a timestamp, usually close to current time, but kept constant across a transaction. Only records for which validFrom <= timestamp < validTo are considered, and within these the newest. The validFrom and validTo can form disjoint intervals, but it is up to the application logic if that is needed or not. It is also possible to select the entry with the highest ID among the records with a given entityID and timestamp-validTo/From-condition. Deleting records can be simulated by this as well, by allowing a way to express a "deleted" record, which means that in case we find this deleted record by our rules, we pretend not having found anything at all. But still referential integrity is possible, because the pre-deletion-data are still there. This concept of having two IDs has been inspired by a talk on that I saw during Clojure Exchange 2017: Immutable back to front.

Share Button

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

*