# O’Reilly schließt Aktivitäten in Deutschland

Der O’Reilly-Verlag hatte jahrelang eine deutsche Niederlassung in Köln, wo deutschsprachige Versionen der beliebten Informatik-Fachbücher herausgegeben wurden. Dies waren oft Übersetzungen, aber in einigen Fällen auch exklusiv in deutscher Sprache erscheinende Titel oder doch Titel, die später vom Deutschen ins Englische übersetzt wurden. Der d-Punkt-Verlag wird die Aktivitäten übernehmen und auch unter dem Name O’Reilly weiterführen.

Mehr dazu unter
Informatik Aktuell.

# How to multiply long numbers

Assuming we have a multiplication of n-bit-numbers already available.
Other than typical compiled languages, which assume that the multiplication result fits into the same size as the two factors, we should take a closer look.
Unsigned n-bit-numbers as factors and fullfill

So we have for the product

So we should be prepared for a 2n-bit long result. Assembly language provides for this. In Java we are kind of running out of luck, because we have the 64-bit-long as the largest possible value, so we cannot make use of the 64-bit capabilities of our CPU by getting a 128-bit-result. Even worse we do not have unsigned primitive types. For addition and subtraction it is possible to cheat by assuming that the longs are unsigned, because the addition for signed and unsigned numbers is almost the same, but for multiplication this is slightly more complex.

In C we do have better chances, but we need to go compiler and OS-specific to some extent. gcc on 64-bit platforms has a type __uint128_t and we can hope that something like this
 __uint128_t mul(unsigned long long x, unsigned long long y) { __uint128_t xx = (__uint128_t) x; __uint128_t yy = (__uint128_t) y; __uint128_t z = xx*yy; return z; } 
is optimized by the compiler to one assembly language instruction that multiplies two unsigned 64-bit-integers into one unsigned 128-bit integer.

Multiplication of longer numbers is achieved by just assuming

with

Now the product is

where each summand needs to be split into a lower and an upper part such that

All these half products need to be added with propagating the carry bits to the next higher level.
This can be sorted out and done with a lot of additions with carry-bit, finally giving the desired result.

For reasonably short numbers this is a good approach, if it is done well, but it can be replaced by better algorithms for larger numbers.

The most obvious next step is to move to the Karatsuba algorithm.
Assuming we have two factors and the naïve approach of having to calculate the four products
, , , can be replaced by calculation of only three products , , , because what is actually needed is the sum which can be obtained by

That can be iterated by subdividing the numbers subsequently into halves until a size is reached that can be handled well enough by the naïve approach.
An issue that needs to be observed is that and need one bit more than their summands.

For even larger numbers the so called Toom-Cook algorithm, an extension of the idea of the Karatsuba-algorithm for more than two summands, can be useful and for numbers larger than that the Schönhage-Strassen multiplication proves to be faster. It is implemented in some libraries for long integer arithmetic, like GMP. Since around 2007 this can be improved by using the Fürer algorithm which is assymptotically faster, but I do not know of any useful implementations and for practical purposes the improvement does not seem to be very relevant.

# How to recover the Carry Bit

As frequent readers might have observed, I like the concept of the Carry Bit as it allows for efficient implementations of long integer arithmetic, which I would like to use as default integer type for most application development. And unfortunately such facilities are not available in high level languages like C and Java. But it is possible to recover the carry bit from what is available in C or Java, with some extra cost of performance, but maybe neglectable, if the compiler does a good optimization on this. We might assume gcc on a 64-Bit-Linux. It should be possible to do similar things on other platforms.

So we add two unsigned 64-bit integers and to a result

with

using the typical „long long“ of C. We assume that

where

and

. In the same way we assume and with the same kind of conditions for , , or , , , respectively.

Now we have

and we can see that

for some

.
And we have

where

is the carry bit.
When looking just at the highest visible bit and the carry bit, this boils down to

This leaves us with eight cases to observe for the combination of , and :

x_hy_huz_hc
00000
10010
01010
11001
00110
10101
01101
11111

Or we can check all eight cases and find that we always have

or

So the result does not depend on anymore, allowing to calculate it by temporarily casting , and to (signed long long) and using their sign.
We can express this as „use if and use if „.

An incoming carry bit does not change this, it just allows for , which is sufficient for making the previous calculations work.

In a similar way subtraction can be dealt with.

The basic operations add, adc, sub, sbb, mul, xdiv (div is not available) have been implemented in this library for C. Feel free to use it according to the license (GPL). Addition and subtraction could be implemented in a similar way in Java, with the weirdness of declaring signed longs and using them as unsigned. For multiplication and division, native code would be needed, because Java lacks 128bit-integers. So the C-implementation is cleaner.

# Kommentarfunktion

Die Kommentarfunktion geht bei jedem Upgrade von WordPress verloren.
Damit sie funktioniert, werden Schreibrechte im Verzeichnis
benötigt. Die muss man nach jedem Softwareupdate überprüfen.
Jetzt sollte die Kommentarfunktion wieder gehen.

# Rundung mit Summe

English

Häufig muss man einige Zahlen auf einmal runden, aber die Summe soll hinterher „aufgehen“. Das kann man „summenerhaltendes Runden“ nennen, wobei unter Umständen auch die Summe gerundet wird. Der häufigste Fall sind Prozentwerte und wenn die gerundeten Zahlen nicht zusammen 100% ergeben, versteht das niemand. Da kann es schon besser sein, etwas schwieriger verständliche Dinge hinter den Kulissen zu tun. Kurz gesagt ist unsere Frage, ob die Rundung ein Endomorphismus der additiven Gruppe ist. Das bedeutet, dass . Auf den resten Blick sieht das vernünftig aus und die Fehler heben sich ja oft irgendwie weg. Aber wir können für eine gängige Rundungsmethode ein Gegenbeispiel finden: . Wir haben . Jetzt wird das gerundet und ergibt . Ein Gegenbeispiel reicht und es ist kein Endomorphismus.

Ist das ein ganz neues Konzept? Es wird ja offensichtlich in fast allen Druckerzeugnissen, die irgendwie Prozentwerte so angeben, für die Gesamtsumme „gemogelt“. Aber es stellt sich heraus, dass das auch hochoffiziell alle vier Jahre passiert. Wir haben irgendwelche Ereignisse, die sich „Wahlen“ nennen und da kann man Parteien oder Listen für ein Parlament eine Stimme geben. Das Parlament hat meistens eine vorgegebene Anzahl von Sitzen, wenn wir mal Spezialitäten wie 5%-Sperrklausel und Überhangmandate in der deutschen Wahlpraxis vergessen, um es noch halbwegs für Logik zugänglich zu halten. Man stelle sich nur vor, was passiert, wenn 40 Parteien antreten und je 2.5% erhalten, um zu sehen, dass das System nicht korrekt ist, im Sinne einer korrekten Software. Nun sollte man meinen, die Parlamentssitze werden einfach im Verhältnis der Stimmen aufgeteilt. Wenn man Parlamentssitze hat, werden die Stimmenanteile in Prozent auf Vielfache von gerundet und zwar so, dass es am Schluss aufgeht. Es gibt viele Verfahren, um das zu bewerkstelligen und je nachdem, welches Verfahren man auswählt, kann bei denselben Stimmenzahlen die Sitzverteilung geringfügig variieren. Habe ich das Wort „Mogeln“ oben erwähnt? Es muss wohl Zufall sein. Welches Verfahren gerade am gerechtesten ist, wechselt also von Jahr zu Jahr immer wieder ein bisschen.

Wenn wir nicht gerade eine Wahlauswertungssoftware schreiben, ist in den meisten Fällen diese Frage weniger aufgeladen. Es soll in einem Text eine Summe von mehreren gerundeten Werten eingehalten werden und die Rundung soll „einigermaßen vernünftig“ erfolgen. Der oberflächliche Leser wird zufrieden sein, der etwas kritischere auch, weil die Summe stimmt und der Leser, der sich richtig Gedanken macht wird es auch verstehen, dass man da mogeln musste und dass man das einigermaßen sinnvoll getan hat. Man beachte, dass diese Thematik einige Überraschungen birgt, z.B. das Alabama-Paradoxon und das Wählerzuwachsparadoxon.

Wie in Restklassenrundung beschrieben, gehen wir von Mengen und mit einer Metrik aus und wollen Abbildungen betrachten, bei denen klein bleibt und eventuell ein paar weitere Bedingungen erfüllt sein sollen. Da aber die Korrektur schon Teil der Abbildung sein soll, interessiert uns hier eigentlich eher so etwas wie eine Abbildung
mit und für alle ist „klein“. Reine Auf- oder Abrundung kann also nicht die Lösung sein, da das nie aufgeht. Wir könnten die Fehlerquadrate minimieren, was den Vorteil hat, das große absolute Abweichungen sich stärker auswirken, so dass eine gleichmäßige Verteilung der Korrektur besser wegkommt, also z.B.
ist minimal. Es lassen sich Beispiele konstruieren, wo das nicht eindeutig ist. In dem Fall kann man entweder eine Regel festlegen oder mit Zufallszahlen ermitteln welche der passenden Möglichkeiten zum Zuge kommt. Man kann auch versuchen, die relativen Fehler zu minimieren, also so etwas wie
, wobei man die Summanden mit weglassen muss, was nicht stört, wenn ist, man also sowieso auf runden will.
Eine Alternative ist, sich einfach an den Sitzzuteilungsverfahren für Parlamente zu orientieren und deren Algorithmen sinngemäß für die hier beschriebene Aufgabe anzupassen:

Oft sind die Anforderungen an die „Qualität“ der Rundung niedriger als bei der Zuteilung von Parlamentssitzen, aber es lohnt sich schon, sich hierüber einige Gedanken zu machen statt einfach irgendwie mit einem naiven Ansatz zu runden.

Frage: Wie verhalten sich die oben aufgeführten Sitzzuteilungsverfahren zur Minimierung der absoluten und relativen Fehlerquadrate?

Bei genügendem Interesse kann ich einmal eine Implementierung für so eine Rundung hinzufügen.

Gelegentlich begegnen uns auch Probleme, die dem hier geschilderten sehr ähnlich sind oder die sich darauf zurückführen lassen. Wer hätte gedacht, dass die Zuteilung von Parlamentssitzen eigentlich eine Rundung ist?

# 2015

Frohes neues Jahr!
Happy New Year
Gott nytt år!
Godt Nyttår!
¡Próspero año nuevo!
Bonne année!
FELIX SIT ANNUS NOVUS
Felice Anno Nuovo!
Весёлого нового года!
السنة الجديدة المبتهجة
Een gelukkig nieuwjaar!

# Weihnachten 2014

Frohe Weihnachten!
Merry Christmas!
God Jul!
Joyeux Noël!
Natale hilare!
С Рождеством!
ميلاد مجيد
Buon Natale!
God Jul!
Prettige Kerstdagen!

# Restklassenrundung

English

Das Konzept der Rundung kennt man grundsätzlich. Aber versuchen wir es etwas systematischer zu erfassen.

Man hat eine Menge von Zahlen und eine Teilmenge davon, deren Elemente in der verwendeten Programmierumgebung dargestellt werden. Dazu hat man noch eine Metrik . Man verlangt normalerweise noch gewisse Eigenschaften von :

• Positive Definitheit:
• Symmetrie:
• Dreiecksungleichung:

Typischerweise sind die Zahlen, mit denen wir uns meistens beschäftigen, in der Welt der reellen und komplexen Zahlen gedacht, man kann also fast immer sicher sein, dass ist, meistens sogar oder wenn wir ehrlich sind sogar . Dann ist normalerweise . Wer die komplexen Zahlen noch nicht kennt, denke einfach an reelle und rationale Zahlen, das ist das, womit wir normalerweise bewusst zu tun haben. Dabei sind natürlich Konzepte wie Rundung speziell in -adischen Zahlen hochinteressant, aber dafür muss ich die erstmal erklären und das lasse ich heute…

Was stellen wir uns nun unter einer Rundung vor?
Vielleicht eine Abbildung
,
die mit gewissen Nebenbedingungen für jedes x jeweils so gewählt wird, dass minimal ist.
Die Nebenbedingungen brauchen wir einerseits, um es eindeutig zu machen, wenn mehrere Werte existieren, für die minimal ist. Der klassische Fall ist das Runden auf ganzzahlige Werte und die Frage mit der . Wenn eine Teilmenge der reellen Zahlen ist, was ja „meistens“ der Fall ist, hat man eine Anordung. Da kommen dann die folgenden Constraints zum Tragen (Beispiel immer mit Rundung auf ganze Zahlen):

ROUND_UP
Z.B. und und
ROUND_DOWN
Z.B. und und
ROUND_CEILING
Z.B. und und
ROUND_FLOOR
Z.B. und und
ROUND_HALF_UP
Minimiere , aber wenn es mehrere optimale Werte für gibt, wähle den am weitesten von 0 entfernten, z.B. und und und
ROUND_HALF_DOWN
Minimiere , aber wenn es mehrere optimale Werte für gibt, wähle den am nächsten an 0, z.B. und und und
ROUND_HALF_CEILING
Minimiere , aber wenn es mehrere optimale Werte für gibt, wähle den größten, z.B. und und und
ROUND_HALF_FLOOR
Minimiere , aber wenn es mehrere optimale Werte für gibt, wähle den kleinesten, z.B. und und und
ROUND_HALF_EVEN
Minimiere , aber wenn es mehrere optimale Werte für gibt, wähle den mit gerader Endziffer. Achtung, dieser Constraint ist im „klassischen“ Fall anwendbar, aber nicht allgemeingültig. Z.B.: und und und und
ROUND_UNNECESSARY
Dieser Constraint ist im mathematischen Sinne nicht geeignet (oder nur mit hässlichen Verrenkungen), aber programmatisch können wir das: Wir nehmen und schmeißen eine Exception wenn nicht schon gilt.

Typischerweise denken wir im Dezimalsystem und dann wählen wir eine Zehnerpotenz mit , also . Nun ist einfach
,
also umgangsprachlich sind in alle Zahlen aus mit maximal Stellen nach dem Komma. Diese Rundung funktioniert ganz gut mit so etwas wie LongDecimal in Ruby oder BigDecimal in Scala oder Java, wobei BigDecimal weniger Rundungsmodi anbietet als LongDecimal für Ruby.

Nun kommen wir zur Restklassenrundung. Wir gehen wieder von dieser Zehnerpotenz aus. Dann brauchen wir noch eine natürlich Zahl und eine Menge von Resten . Nun ist
.
Das bedeutet, wenn wir mit Nullen auf die angegebene Anzahl von Nachkommastellen auffüllen, das „Komma“ (normalerweise als „.“ geschrieben) weglassen und dann diese Zahl mit Rest durch teilen, der dabei herauskommende Rest in liegt.
In diesem Fall wird es mit dem ROUND_HALF_EVEN eventuell schwierig, da es undefiniert oder mehrdeutig werden kann. Aber wir müssen auch den Fall abdecken, dass die 0 nicht in ist und Regeln angeben, wohin die 0 gerundet werden soll. Die Kandidaten sind hier mit selbsterklärenden Namen versehen:

• ZERO_ROUND_TO_PLUS
• ZERO_ROUND_TO_MINUS
• ZERO_ROUND_TO_CLOSEST_PREFER_PLUS
• ZERO_ROUND_TO_CLOSEST_PREFER_MINUS
• ZERO_ROUND_UNNECESSARY

Ein wichtiger Anwendungsfall ist hier und . So kann man in der Schweiz Geldbeträge auf Vielfache von 5 Rappen (0.05 CHF) runden. Dies wurde in Rundung bei Geldbeträgen bereits genauer beschrieben.

# English or German / Englisch oder Deutsch

Currently I am writing blog articles in German and translate them to English, if I consider them interesting for a wider audience. I am considering to do it the other way round and write articles in English and provide a German translation of some of them. I am creating a poll for this.
Find the poll in the upper left corner of the Start page.

Zur Zeit schreibe ich alles auf Deutsch und übersetze Artikel auf Englisch, wenn sie von allgemeinerem Interesse sind. Ich überlege, es umgekehrt zu machen und die Artikel ab 1. Januar 2015 auf Englisch zu schreiben und bei Interesse einzelne auf Deutsch zu übersetzen. Ich starte eine Umfrage dazu.
Die Umfrage steht in der linken oberen Ecke der Startseite.

# Scala Exchange 2014

English

Ich war am 8. und 9. Dezember 2014 auf der Konferenz Scala Exchange ( #scalaX ) in London.

Von mir besuchte Vorträge waren etwa folgende:

# The Binary Compatibility Challenge

## Martin Odersky

Es gibt Beispiele von allen vier Kombinationen von Sourcecode- und Binärkompatibilität.
Man wünscht sich von beidem mehr, Schwerpunkt heute aber Binärkompatibilität.
Konflikt für Scala: Innovation vs. Kompatibilität. Java hat den einen Extrempfad gewählt, Kompatibilität über alles, hat es aber auch leichter gehabt, weil Java die JVM mit „kontrolliert“. Clojure, Ruby, JRuby, Perl,… haben alle kein Problem mit Binärkompatibilität, weil sie in der Regel „just in time“ compiliert werden, also nur Quelltexte herumgereicht werden.
Reproduzierbare Builds sind in Scala schwierig, man denke alleine an die viele Build-Tools (ivy, gradle, maven, sbt,…)
Idee: nach etwa 10 der etwa 30 Schritte des Kompilierens den Baum des Programms in einem cleveren Binärformat speichern. Dieses Format ist ein bessere Kompromiss und von dort kann man leichter fertig-kompilieren.

# REST on Akka: Connect to the world

## Mathias Doenitz

Akka-http ist quasi Spray 2.0 oder Nachfolger für Spray.
Das sollte wegen der reactive Streams in Akka sein.
Verwende TCP-Flow-Control für „Backpressure“.

# Bootstrapping the Scala.js Ecosystem

## Haoyi Li

Scala wird nach Javascript statt JVM compiliert. Target ist eindeutig der Browser, weniger serverseitiges JS, wo man ja die JVM meist einsetzen kann.
Vorteil für Web-Applikationen: selbe Tag-Generierung, Validierung etc. auf Browser- und Serverseite. Eleganter als zwei Sprachen.
Einschränkungen: Libraries zu übertragen ist schwierig, da sie groß sind.
Keine Reflection auf scala.js verfügbar. Damit geht vieles nicht, aber es bleibt genug, was geht. Serialisierung eine Herausforderung, aber gelöst.
Testing riesige Herausforderung, gelöst halbwegs mit Teilmenge von scalatest.
Integer-Typen sind ein bisschen ein Gebastel, weil JS nur double kennt, was 53 bit entspricht. Long muss also mit zwei doubles nachgebildet werden.

# Introduction to Lambda Calculus

## Maciek Makowski

Sehr theoretischer Vortrag. Lambdacalculus wie Programmiersprache, Berechenbarkeitstheorie etc. Viele schöne Beweise möglich. Die theoretische Essenz der funktionalen Programmierung ist das. Stichworte: „Church Rosser Theorem“, „Programmierung mit Lambda-Kalkül“, „Zahlen als Lambda-Ausdrücke“ (church encoding), „y combinator“, „fixed point combinator“, „lambda cube“, „vierte Dimension für Subtypen“, ….
Sehr kleine Sprache, toll für Beweise, nicht für die Praxis brauchbar.

# State of the Typelevel

## Lars Hupel

Typelevel ist von Haskell inspiriert. Bibliotheken u.a. scalaz, shapeless, spire, scalaz-stream, monocle,….
Wir sollten anstreben, korrekte Programme zu schreiben und optimieren wenn nötig.
Die JVM-Integer-Typen sind nicht gut. Fließkommazahlen sind gut für numerische Mathematiker und in dem Bereich gebildete Wissenschaftler, die sich mit Fehlerfortpflanzung auskennen.
Natürlich behandeln wir Zahlen als Funktionen, z.B.
mit
Gleichheit von Reelen Zahlen ist nicht in endlicher Zeit entscheidbar.
Was ist „Costate command coalgebra“? Monocle behandelt „lenses“ und ähnliche Dinge, die man aus Haskell kennt…
Gute binäre Serialisierungsformate sind in der JVM-Welt rar.
Wie geht man mit der Angst vor scalaZ und Monaden um?

# Slick: Bringing Scala’s Powerful Features to Your Database Access

## Rebecca Grenier

Slick ist eine Library, die SQL-Queries generiert und dann ausführt. Die konzeptionellen Schwächen von JPA werden geschickt umgangen.
Hat Treiber für die fünf großen DBs und einige kleinere. Aber für Oracle, DB2 und MS-SQL-Server nicht frei.
Innere und äußere Joins sind verfügbar und elegant zu schreiben. Slick kann mit dem Datenbank-Dictionary sogar Code generieren.

# Upcoming in Slick 2.2

## Jan Christopher Vogt

Monaden kommen auch hier vor. Zeit das endlich zu lernen. Ich werde einen Vortrag in der Ruby-on-Rails-Usergroup darüber halten, dann muss ich es lernen.
Sessions in Kombination mit Futures gibt lustige Albträume.
Wenigstens ist Slick theoretisch korrekt, im Gegensatz zu JPA.
Mehrere Statements kombinieren mit andThen oder for. Achtung, default verschiedene Sessions.
Threads sind teuer, Reactiveness ist wichtig. Futures und Threadpools, geht aber schief beim „blocking“.
JDBC kann nicht assynchron. Workaround oberhalb von JDBC scheint aber ausreichend zu sein und nur ein paar mehr Threads zu brauchen als die richtige Lösung, also verantwortbar.
Statisch gechecktes SQL?

# No more Regular Expressions

## Phil Wills

Ich mag Regex in Perl sehr. Warum also so etwas aufgeben?
Nun, man gibt es nicht wirklich auf, ändert nur die Schreibweise.
Die Schreibweise als String ist in Perl natürlich, in Scala ein Fremdkörper.
Daher typische programmatische Schreibweise angemessener, aber auch robuster bei Fehlern.
Verwende org-paraboiled2
Capture lieder positionell, tut aber viel weniger weh als bei klassischen regex.

# Scala eXchange – Q&A Panel

## Jon Pretty, Kingsley Davies, Lars Hupel, Martin Odersky, and Miles Sabin

Einige interessante Diskussionen…

# Why Scala is Taking Over the Big Data World

## Dean Wampler

Zitat (übersetzt): ‚“Hadoop“ ist das „EJB“ unserer Zeit.‘
MapReduce ist konzeptionell eigentlich schon funktionales Programmieren. Warum also Java und nicht Scala??
Stichwörter: „Scalding“, „Storm“, „Summing bird“, „Spark“.
Scala kann performanter als Python sein, das hier beliebt ist. Aber nicht überstürzt ablösen.

# Case classes a la carte with shapeless, now!

## Miles Sabin

Beispiel: Baum mit Rücklinks. Schwierig mit konsequenter Immutability. Shapeless hilft.

# Reactive Programming with Algebra

## André Van Delft

Algebra kann Spaß machen und nützlich für die Programmierung sein. Algebraische Interpretation eingeführt.
Webseite subscript-lang.org.
Algebra der kommunizierenden Prozesse. Sehr mächtig, auch für andere Gebiete anwendbar, etwa Betrieb von Bahnsystemen.
Jedes Programm, das Eingaben behandelt, ist auf eine Art ein Parser, also Ideen von yacc und bison interessant auch hier.

# High Performance Linear Algebra in Scala

## Sam Halliday

Lineare Algebra ist sehr gut gelöst, also sollte man das Rad nicht neu erfinden.
TL;D, Netflix und Breeze. Anwendungsbeispiel: Kalman Filter.
netlib hat Referenzimplementierung in Fortran. Wie bringt man das in die Scala-Welt?
Fortran mit C-Wrapper versehen, für JNI erreichbar. (cblas)
Fortran nach Java kompilieren. Ja.
Alternative Implementierung mit derselben Testsuite in C.
High-Performance geht nicht nur um Geschwindigkeit per se, sondern immer unter dem Aspekt der Korrektheit, Genauigkeit und Stabilität.
Hardware ist interessant: Die CPU-Hersteller reden mit dem netlib-Team.
Kann man GPU benutzen? Ja, aber Transfer der Daten schwierig.
FPGA? Vielleicht bald?
Oder sowas wie GPU, aber ohne echte Grafik und mit dem normalen RAM?

# An invitation to functional programming

## Rúnar Bjarnason

Referenzielle Transparenz, etwa die Kompatibilität mit dem Memoize-Pattern.
Pure Functions…
Parallelisierung
Verständlichkeit ist das ewige Versprechen. Warum wird es diesmal gehalten?
Funktionale Programmierung ist nicht gut für die „Schützengräben“ der reellen Aufgaben.
Aber gut, um aus den Schützengräben rauszukommen in vernünftigere Welten… So der Anspruch…

# Building a Secure Distributed Social Web using Scala & Scala-JS

## Henry Story

Spargl ist wie SQL für das „semantic web“.
Entwickelt mit Unterstützung von Oracle.
Wir können Relativität der Wahrheit haben, während wir die absolute Wahrheit aufrechterhalten. Der Vortrag war recht philosophisch.
Graphen können isomorph sein, aber verschieden hohes Vertrauen genießen, je nachdem, wo sie liegen.
Linked Data Protocol kommt ins Spiel
Wie verhindert man Spam und Missbrauch? WebID?
Hier geht es nicht um „Big Data“, sondern um massiv verteilte und parallele „small data“.

# TableDiff – a library for showing the difference between the data in 2 tables

## Sue Carter

Was ist für ein Diff die richtige Semantik?
Was will man sehen? Wie werden Zahlen und Zeichenketten in den Feldern verglichen?

# Evolving Identifiers and Total Maps

## Patrick Premont

Idee ganz kurz: eine Map, deren Get immer etwas zurückgibt. Durch geschickte Typ-Konzepte wird verhindert, dass ein Aufruf, der ins Leere greifen würde, überhaupt compiliert.
Interessante Idee, finde sie aber eher theoretisch nützlich.