Shift- und Rotationsfunktionen

English

Im Kommentar zu Carry Bit: How does it work ist nach den Shift- und Rotationsfunktionen gefragt worden. Welche es genau gibt, hängt natürlich von der Prozessorarchitektur ab, aber grundsätzlich muss man die folgenden Aspekte beachten:

  • 8, 16, 32, 64,… Bit: Wieviele Bits sind von der Operation betroffen?
  • Shift vs. Rotate: Beim Shift werden an einer Seite Bits als 0 oder 1 ergänzt und auf der anderen Seite wandern sie in das Carry-Bit, beim Rotieren werden Bits im Kreis rotiert, die herausfallenden Bits vom einen Ende werden am anderen Ende wieder eingefügt.
  • ROL und ROR vs RCL und RCR: Beim Rotieren durch Carry wird das Carry-Bit als 9., 17., 33. oder 65. Bit miteinbezogen.
  • Logical vs. Arithmetic Shift: Bezieht sich auf die Vorzeichenbehandlung. Für arithmetic Shift wird die Zahl als vorzeichenbehaftet im Zweierkomplement gelesen wird. Deshalb wird beim Right-Shift nicht zwingend eine 0 als höchstwertiges Bit eingefügt, sondern je nach Vorzeichen eine 0 oder eine 1.

Heutige CPUs haben Barrelshifter oder etwas vergleichbares eingebaut und können deshalb auch Shift- und Rotate-Operationen um mehr als eine Bit-Position schnell ausführen.

Wie die Befehle genau heißen, und welche es gibt, hängt vom Prozessor ab:

Beispiele (8 Bit), Verschiebung oder Rotation nur um eine Bitposition:

Vorher (Carrybit in Klammern)ROL
(rotate left)
RCL
(rotate left through carry)
ROR
(rotate right)
RCR
(rotate right through carry)
ASL / SHL
(arithmetic/logical shift left)
SHR
(logical shift right)
ASR
(arithmetic shift right)
00000000 (0)00000000 (0)00000000 (0)00000000 (0)00000000 (0)00000000 (0)00000000 (0)00000000 (0)
00000000 (1)00000000 (1)00000001 (0)00000000 (1)10000000 (0)00000000 (0)00000000 (0)00000000 (0)
00000001 (0)00000010 (0)00000010 (0)10000000 (0)00000000 (1)00000010 (0)00000000 (1)00000000 (1)
00000001 (1)00000010 (1)00000011 (0)10000000 (1)10000000 (1)00000010 (0)00000000 (1)00000000 (1)
10000000 (0)00000001 (0)00000000 (1)01000000 (0)01000000 (0)00000000 (1)01000000 (0)11000000 (0)
10000000 (1)00000001 (1)00000001 (1)00000001 (1)11000000 (0)00000000 (1)01000000 (0)11000000 (0)
11111111 (0)11111111 (0)11111110 (1)11111111 (0)01111111 (1)11111110 (1)01111111 (1)11111111 (1)
11111111 (1)11111111 (1)11111111 (1)11111111 (1)11111111 (1)11111110 (1)01111111 (1)11111111 (1)

Diese Shift- und Rotate-Operationen braucht man vor allem, um Multiplikation mit Zweierpotenzen und Division durch Zwierpotennzen auszudrücken. In C, C++, Perl, Java und einigen anderen Programmiersprachen gibt es diese Operationen „<<" (für ASL oder SHL), ">>“ (für SHR) und „>>>“ für ASR.

Share Button

Sortieren mit Multithreading

Eine Barriere muss man sich so vorstellen, dass verschiedene Threads jeweils ihre eigene Aufgabe durchführen und dann auf die Barriere „warten“, was bedeutet, dass sie darauf warten, dass alle anderen beteiligten Threads auch auf die Barriere warten, also die davor angesetzte Aufgabe abgeschlossen haben.

Als Anwendung für die sogenannte „Barriere“ habe ich einmal ein kleines C-Programm geschrieben, das eingelesene Zeichenketten sortiert. Über einen Parameter kann man wählen, ob Heapsort oder Flashsort oder Quicksort verwendet wird. Dafür habe ich zwei Funktionen (mit Header-Datei) hsort und hsort_r geschrieben, die das gleiche Interface wie qsort und qsort_r haben, so dass man sie austauschbar nutzen kann. Entsprechend auch drei Funtkionen fsort, fsort_r und fsort_f (mit Headern), die sich an das Interface von qsort anlehnen, aber noch einen zusätzlichen Funktionisparameter haben, der eine Art monotone Hash-Funktion nach double darstellt. Die gegebenen Zeichenketten werden zu möglichst gleichen Teilen auf eine frei wählbare Anzahl Threads verteilt. Jeder Thread sortiert seinen Teil mittels hsort_r oder fsprtr oder qsort_r. Anschließend wird mit einer Barriere sichergestellt, dass alle Threads ihren Teil sortiert haben und dann werden baumartig die Ergebnisse von jeweils zwei Threads zusammengefügt, jeweils gefolgt von einer weiteren Verwendung Barriere. An Schluss bleibt ein Thread mit seinem Ergebnis übrig und das ist das Sortierergebnis.

Bei einer Beispieleingabe mit 8603049 Wörtern war fsort mit einem Thread etwas schneller als qsort und qsort war etwa viermal so schnell wie hsort, aber mit einer größeren Anazhl Threads ließen sich alle drei beschleunigen.
Interessant war auf einem Rechner mit 4 Core-CPU und Hyperthreading, also 8 logischen CPUs, die unter /proc/cpuinfo angezeigt wurden, dass das Sortieren mit mehr Threads bei hsort mehr profitierte als bei qsort und um Faktor 5 schneller wurde, während fsort nur um Faktor 2 schneller wurde.

Das erklärt sich wohl vor allem durch das assymptotisch gute Verhalten von fsort (O(n)), was beim Sortieren großer Datenmengen in einem Thread besonders stark zum Tragen kommt. hsort ist im „worst case“ auch noch O(n \log n)

Threads Messwert Quicksort Heapsort Flashsort
1 real 4.090s 16.909s 3.757s
1 user 4.028s 16.815s 3.686s
1 sys 0.053s 0.053s 0.062s
           
2 real 2.753s 8.915s 2.672s
2 user 4.177s 16.457s 3.925s
2 sys 0.074s 0.054s 0.066s
           
3 real 2.333s 6.584s 2.392s
3 user 4.261s 16.676s 4.159s
3 sys 0.070s 0.064s 0.067s
           
4 real 2.027s 5.288s 2.093s
4 user 4.331s 16.202s 4.137s
4 sys 0.067s 0.072s 0.077s
           
5 real 2.151s 5.013s 2.254s
5 user 4.681s 17.423s 4.567s
5 sys 0.060s 0.056s 0.076s
           
6 real 2.039s 4.519s 2.104s
6 user 5.264s 18.511s 4.892s
6 sys 0.072s 0.062s 0.078s
           
7 real 1.928s 4.127s 2.092s
7 user 5.333s 18.878s 5.265s
7 sys 0.080s 0.056s 0.094s
           
8 real 1.862s 3.879s 1.931s
8 user 5.638s 19.338s 5.380s
8 sys 0.080s 0.061s 0.069s
           
9 real 2.032s 4.079s 2.174s
9 user 5.484s 19.594s 5.460s
9 sys 0.072s 0.066s 0.081s
           
10 real 2.017s 4.040s 2.130s
10 user 5.426s 19.091s 5.356s
10 sys 0.084s 0.080s 0.090s
           
11 real 1.954s 4.055s 2.081s
11 user 5.427s 19.240s 5.460s
11 sys 0.077s 0.081s 0.095s
           
12 real 1.928s 3.842s 2.053s
12 user 5.409s 18.860s 5.462s
12 sys 0.078s 0.075s 0.092s
           
13 real 1.923s 3.884s 2.040s
13 user 5.384s 19.123s 5.511s
13 sys 0.077s 0.072s 0.080s
           
14 real 1.870s 3.793s 2.037s
14 user 5.482s 18.566s 5.610s
14 sys 0.064s 0.070s 0.089s
           
15 real 1.895s 3.679s 1.979s
15 user 5.578s 18.549s 5.554s
15 sys 0.090s 0.067s 0.084s
           
16 real 1.861s 3.790s 1.979s
16 user 5.576s 19.033s 5.640s
16 sys 0.088s 0.085s 0.101s
           
17 real 2.025s 3.885s 2.181s
17 user 5.647s 18.699s 5.799s
17 sys 0.090s 0.076s 0.102s
           
18 real 2.019s 3.879s 2.156s
18 user 5.688s 18.532s 5.723s
18 sys 0.069s 0.107s 0.095s
           
19 real 2.022s 3.918s 2.140s
19 user 5.774s 18.783s 5.681s
19 sys 0.093s 0.085s 0.091s
           
20 real 1.975s 3.774s 2.129s
20 user 5.588s 18.095s 5.732s
20 sys 0.093s 0.087s 0.105s
           
100 real 1.978s 3.263s 2.099s
100 user 5.686s 15.371s 6.034s
100 sys 0.150s 0.115s 0.141s
           
400 real 2.013s 2.996s 2.092s
400 user 5.719s 13.150s 6.184s
400 sys 0.242s 0.185s 0.259s
           
1000 real 1.992s 2.876s 2.106s
1000 user 5.802s 12.608s 6.469s
1000 sys 0.325s 0.250s 0.392s

Man sieht also, was auch zu erwarten ist, dass Parallelisierung beim Sortieren hilfreich sein kann. In diesem Fall eignet sich der Algorithmus gut für die Parallelisierung, weil im ersten Schritt jeder Thread seinen getrennten Bereich sortiert und in den weiteren Schritten jeweils ein Thread die eigenen Daten mit denen eines anderen Threads zusammenfügt, während dieser andere Thread nur auf die Barriere wartet. Es gibt sicher noch bessere Verfahren, das zu parallelisieren, aber man sieht, dass es sich lohnt, wenn man wirklich genug CPUs zur Verfügung hat.

Share Button

Threads oder Prozesse

Zur Parallelisierung einer Software kann man auf Threads und Prozesse zugreifen. Es lohnt sich, diese beiden Ansätze etwas genauer anzuschauen, um die geeignete Wahl treffen zu können.

Warum Parallelisierung?

  • Mehr CPUs nutzen
  • Moore’s law: Anzahl der Transistoren in IC verdoppelt sich ca. alle 2 Jahre.
  • Bis vor ca. 10 Jahren verdoppelte sich die CPU-Leistung auch regelmäßig.
  • Seit ca. 10 Jahren nur noch mehr Cores
  • Nur nutzbar durch Parallelisierung
  • Parallelisierung kann aber auch Dinge vereinfachen.
  • Beispiel Pipes:
cat `find /usr/bin/* -type d -prune -o -type f -print` \
| perl -p -e 's/sch/\\v s/g;s/\r/\n/g;' | strings \
| sort > /tmp/out.log &
  • Startet pro Pipe-Komponente einen Prozess, viel flexibler und meist perfomanter als wenn man Zwischenergebnisse in Dateien zwischenspeichern muss.
  • Integration verschiedener Software-Komponenten.
  • Typische Beispiele:
    • Datenbank
    • Messaging-System
    • SAP
    • Heterogene Software (mehrere Programmiersprachen…)

Probleme bei Parallelisierung

Unabhängig von der verwendeten Technologie muss man sich mit u.a. diesen Problemen auseinandersetzen:

  • Deadlocks (Verklemmung)
  • Fehler bei gleichzeitigem Ressourcenzugriff
  • Overhead der Parallelisierung
  • Erschwerte Fehlersuche

Deadlocks

Beispiel für Deadlock:

  • Zwei parallel laufende Programmteile A und B greifen exklusiv auf zwei Ressourcen X und Y zu.
  • A reserviert sich erst X und dann Y, B reserviert sich erst Y und dann X.
  • Bei ungünstigem Verlauf wartet A endlos auf Y und B endlos auf X.

Fehler bei gleichzeitigem Ressourcenzugriff

  • Beispiel Datenstruktur wird von Programmteil A und Programmteil B gleichzeitig verwendet.
  • Wenn beide Zugriffe nur lesend sind, ist das ok.
  • Wenn einer schreibt, kann es Inkonsistenzen geben, wegen Pointern sogar Programmabstürze, merkwürdige Fehler u.s.w.
  • Schwierig zu finden
  • Tritt oft erst auf dem Produktivsystem auf, beim Testen scheint alles gut zu sein.

Overhead

Wenn man Software parallelisiert muss man zusätzlich Dinge tun, die man sonst nicht braucht:

  • Locking
  • Kommunikation
  • Synchronisation
  • Memory
  • Mehr Entwicklungsaufwand

Das kann sich aber lohnen.
Besser frühzeitig daran denken!!!

Wie zähmt man die Parallelisierung?

  • In Applikationsentwicklung mit geeigneten Werkzeugen, Frameworks,…
  • In der Praxis viele Probleme und oft wenig Gewinn
  • Aber es gibt Wege die funktionieren..
  • Traum: Compiler parallelisiert automatisch
  • Aber für Systemprogrammierung explizite Kontrolle wichtig!

Threads oder Prozesse

Threads oder Prozesse???

Man kann für die Parallelisierung drei Wege gehen (oder Kombinationen daraus):

  • Prozesse
  • Threads auf OS-level
  • Eigener Mechanismus (User Threads)

Prozesse

  • Prozesse haben ihren eigenen Speicherbereich
  • Können auf verschiedenen Rechnern laufen
  • Explizite Kommunikation
  • Mit shared memory kann man auch gemeinsamen Speicher nutzen
  • Mehr Overhead als Threads

Threads

  • Threads laufen auf derselben Maschine
  • Teilen sich dasselbe Memory
  • Trennung muss man explizit erzwingen

Funktionsweise Prozess (POSIX)

  • Ein neuer Prozess wird mit fork() erzeugt
  • Dupliziert den ganzen Speicher
  • Effizient wegen copy-on-write
  • Achtung: overcommit
  • Danach (meistens) exec

Unter MS-Windows wird das Erzeugen eines neuen Prozesses und das Starten eines neuen Programms gleichzeitig in einem Schritt ausgeführt.

IPC

Interprozesskommunikation:

  • Signale
  • Pipe (named oder anonym)
  • Semaphore (Locks)
  • Shared Memory
  • Socket
  • Message Queue
  • File
  • Memory-mapped File
  • High-Level-Mechanismen (DB, Messaging, Corba, Rest, Soap, RPC,…)

Threads (Posix)

  • Mit pthread_create(…) erzeugen
  • Mit pthread_join(…) “einsammeln”
  • Funktion void *f(void *) übergeben
  • In C++ 11 in die Sprache integriert

Was soll man bevorzugen

Es hängt von der Ausgangslage ab.

Entwickelt man mit Ruby oder Perl, sind vielleicht mehrere Prozesse besser, weil Threads in diesen Sprachen nicht so gut unterstützt werden. Entwickelt man mit Scala oder Java, sind Threads vielleicht besser, weil das dort das gängige und gut unterstützte Parallelisierungsverfahren ist und weil JVM-Prozesse jeweils recht schwergewichtig sind, was den Speicherverbrauch betrifft.

Entwickelt man in C oder C++ und hat mehr oder weniger alle Möglichkeiten des Betriebssystems zur Verfügung, dann sind beide Wege gut gangbar. Man kann mit Shared Memory und anderen IPC-Mechanismen mehrere Prozesse zusammenspannen, aber auch mehrere Threads. Man muss sich in jedem Fall darum kümmern, dass gemeinsam genutzte Ressourcen konsistent bleiben und insbesondere nicht in inkonsistentem Zustand gelesen werden.

Man sollte beide Möglichkeiten kennen und im Einzelfall entscheiden, welcher Weg sich am besten eignet.

Share Button

Java 8

Java 8 ist erschienen.
Das bedeutendste neue Feature sind die Lambda-Expressions, die es unter anderem erleichtern, funktional zu programmieren.

Share Button

Mathematical Formulas in WordPress

Deutsch

This blog uses the Plugin WP QuickLaTeX which gets its \LaTeX-rendering done by QuickLaTeX.

If only a page starts with [{\sf latexpage}], formulas can be embedded with \backslash(\ldots\backslash) or \backslash[\ldots\backslash]. They have to be written in LaTeX-notation.

So this blog can use formulas like for example:

    \[ \bigwedge_{z\in\Bbb C}\, \sin z = \sum_{k=0}^\infty \frac{(-1)^k z^{2k+1}}{(2k+1)!}=z-\frac{z^3}{6}+\frac{z^5}{120}-\frac{z^7}{5040}+\ldots \]

    \[ \bigwedge_{z\in\Bbb C}\, \cos z = \sum_{k=0}^\infty {\frac{(-1)^k z^{2k}}{(2k)!}}=1-\frac{z^2}{2}+\frac{z^4}{24}-\frac{z^6}{720}+\ldots \\ \]

    \[ {\bigwedge_\stackrel{z\in\Bbb C}{\cos z \ne 0}} \tan z = \frac{\sin z}{\cos z} \\ \]

    \[ {\bigwedge_\stackrel{z\in\Bbb C}{\sin z \ne 0}} \cot z = \frac{\cos z}{\sin z} \\ \]

    \[ {\bigwedge_\stackrel{z\in\Bbb C}{\cos z \ne 0}} \sec z = \frac{1}{\cos z} \\ \]

    \[ {\bigwedge_\stackrel{z\in\Bbb C}{\sin z \ne 0}} \csc z = \frac{1}{\sin z} \\ \end{align} \]

    \[ \sec(z) = 4\pi \, \sum_{k=0}^{\infty} \frac{(-1)^k(2k+1)} {(2k+1)^2 \pi^2 - 4 z^2 } \]

    \[ \csc(z) = \frac{1}{z} - 2z \, \sum_{k=1}^{\infty}\frac{(-1)^k} {k^2\pi^2-z^2} = \sum_{k=-\infty}^\infty \frac{(-1)^k \, z}{z^2-k^2\pi^2} \]

So I am making use of this, whenever it seems to make sense, so it can be avoided to write mathematical formulas in some unintelligable ASCII-text.

Why don’t we have that in the development environments of modern programming languages? If a formula is given, it could be written in a much nicer way, at least in the comments. I understand that Donald E. Knuth has introduced the concept of literate programming many decades ago. The source file is a .web, .cweb or .fweb file from which the illiterate source and the TeX-documentation can be produced using weave and tangle or cweave and ctangle or fweave and ftangle. This allows for excellent readable printouts and compilable programs from the common (literate) source file. A little bit of this idea has gone into the idea of javadoc and rubydoc and perldoc, but a conveniant and powerful mechanism for mathematical formulas would still be appreciated.

Share Button

Dämonisierung von Prozessen

Auf Unix- und Linux-artigen Systemen laufen immer einige sogenannte Daemon-Prozesse. Diese laufen im Hintergrund, haben also keine Verbindung mit einem Terminal.
Beim Start kann man eine sogenannte Daemonisierung verwenden. Man startet von dem interaktiv gestarteten Prozess einen Child-Prozess. Dieser hat noch Verbindung zum ersten und damit zum Terminal. Nun startet man von diesem den eigentlichen Daemon-Prozess und beendet den Child-Prozess. Nun ist die Verbindung zum Parent-Prozess gekappt und der Daemon-Prozess wird damit zum Child-Prozess des Init-Prozesses. Wenn sich der Daemon beendet, wird durch init regelmäßig wait() aufgerufen und damit verhindert, dass dieser als Zombie-Prozess noch lange im System unterwegs ist. Nun muss der Daemon-Prozess aber informiert werden, wann der Child-Prozess beendet ist.
Dies kann wie folgt erfolgen:

/* (C) IT Sky Consulting GmbH 2014
 * http://www.it-sky-consulting.com/
 * Author: Karl Brodowsky
 * Date: 2014-02-27
 * License: GPL v2 (See https://de.wikipedia.org/wiki/GNU_General_Public_License )
 */

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

int daemonized = 0;

void signal_handler(int signo) {
  daemonized = 1;
}

int main(int argc, char *argv[]) {
  int fork_result;
  int ret_code;
  int status;
  int pid = getpid();

  /* set pgid to pid */
  setpgid(pid, pid);
  signal(SIGUSR1, signal_handler);

  /* first fork() to create child */
  fork_result = fork();
  if (fork_result == 0) {
    printf("In child\n");

    /* second fork to create grand child */
    fork_result = fork();
    if (fork_result != 0) {
      /* exit child, make grand child a daemon */
      printf("exiting child\n");
      exit(0);
    }
    
    /* in daemon (grand child) */
    pid = getpid();
    while (! daemonized) {
      pause();
    }

    printf("daemon has pid=%d pgid=%d ppid=%d\n", pid, getpgid(pid), getppid());

    /* do daemon stuff */
    sleep(30);
    printf("done with daemon\n");
    exit(0);
  }
  printf("parent waiting for child\n");
  wait(&status);
  printf("child terminated\n");
  kill(-getpid(), SIGUSR1);
  printf("parent done\n");
}

Durch das Setzen einer Prozessgruppen-ID ist es möglich, den Parent-Prozess, den Child-Prozess und den Daemonprozess auch über diese gemeinsame Gruppen-Id anzusprechen, ohne die eigentliche pid zu kennen. Negative Werte als Funktionsparameter für Funktionenen, die dort eine Prozess-Id (pid) erwarten, werden oft als pgid (Prozessgruppen-ID) interpretiert. Wenn der Child-Prozess beendet ist, wird das wait im Parent-Prozess beendet und dieser schickt ein Signal an den Daemon-Prozess, das von diesem ignoriert wird, aber zur Beendigung des Wait-Prozesses führt.

Für ein kleines Beispiel mag es noch akzeptabel sein, nach stdout zu schreiben, aber die Ausgaben eines Daemons sollten natürlich am Ende in einer Log-Datei landen. Das kann durch Ausgabeumleitung oder noch schöner durch Verwendung von syslog geschehen, ist aber ein Thema für sich.

Share Button

Logging

English

Software enthält häufig eine Log-Funktionalität. Üblicherweise werden dort ein- oder mehrzeilige Einträge in eine Datei, nach syslog oder in die Standardausgabe geschrieben (und letzlich in eine Datei umgeleitet), die etwas darüber sagen, was die Software so macht. Normalerweise kann man das alles ignorieren, aber sobald dort etwas mit „ERROR“ auftritt oder schlimmer noch sogenannte Stacktraces, ist eigentlich angesagt, dass man dem Problem auf den Grund geht. Da nun leider Software häufig von minderer Qualität ist, was durchaus von den Unzulänglichkeiten der verwendeten Libraries und Frameworks kommen kann, sieht man das leider recht oft, teilweise so oft, dass man denen nicht mehr wirklich nachgeht. Ärgerlich ist vor allem, dass der eigentliche Fehler oft vorher an einer ganz anderen Stelle aufgetreten ist, sich aber in der Log-Datei nicht nachvollziehen lässt.

Nun ist es schön, dass die Log-Dateien einen gewissen Aufbau der Einträge einhalten. Meist beginnen sie mit einer Zeitangabe im ISO-Format, oft auf die Millisekunde genau. Da in der Regel mehrere Prozesse oder mehrere Threads gleichzeitig laufen, werden deren Einträge natürlich mehr oder weniger wild gemischt. Das ist gut erträglich, wenn auch mehrzeilige Log-Einträge (z.B. Stack-Traces) zusammen bleiben und wenn sich Anfang und Ende von mehrzeiligen Log-Einträgen gut erkennen lassen. Man kann dann mit Splunk oder mit Perl- oder Ruby-Scripten die Log-Dateien analysieren und jeweils für einzelne Threads die Abläufe nachvollziehen. Das Zusammenhalten mehrzeiliger Einträge lässt sich realisieren, indem man ein atomares write verwendet oder indem man einen „Logger-Thread“-hat und alle Log-Einträge diesem Thread in einer Queue zur Verfügung stellt, die dieser dann abarbeitet und herausschreibt.

Insgesamt ist das ganze Thema aber unübersichtlich und unhandhabbar geworden. In der Java-Welt hatte man früher log4j und eine relativ einfache Konfigurations-Datei im properties-Format. Das wurde dann irgendwann durch XML ersetzt und es kamen andere Logging-Frameworks dazu und jeweils immer wieder etwas, was alle diese vereinheitlichte. Letztlich wurde es dadurch komplizierter und unübersichtlicher.

Es stellt sich die Frage, wie viel von der Logik für die Handhabung der Log-Dateien in die Software selbst gehört. Muss die Software wissen, in welche Datei geloggt wird? Muss sie Log-Rotation kennen? Muss es sein, dass eine Software überhaupt nicht startet, nur weil man es nicht schafft, die komplizierte Log-Konfiguration richtig einzustellen? Letztlich müssen die Log-Dateien am Ende den Systemadministrator zufriedenstellen, der die Software auf dem Produktivsystem betreibt. Soll man diesem zumuten, für jede Software eine spezielle Konfiguration des Logging zu pflegen? Oder für diesen Zweck jeweils von den Entwickerln eine neue Software-Version anzufordern, weil die Konfiguration als Teil des Deployments „hardcodiert“ ist? Interessant wird es auch dann, wenn man auf Technologien wie „Platform as a Service“ (PAAS) setzt, wo man Applikationsserver, Framework, Datenbank u.s.w. zur Verfügung hat, aber wo die Software ohne weiteres den Server wechseln kann und damit Dateien verloren gehen.

Ist es vielleicht einfach die bessere Lösung, unter Einhaltung eines vernünftigen Formats nach stdout zu loggen die Software so laufen zu lassen, dass deren Standardausgabe (stdout oder stderr) in einen logmanager geleitet wird? Dieser kann dann für alle Software, die auf dem System läuft, verwendet werden und vom Systemadministrator einheitlich konfiguriert werden. Einheitlich heißt nicht nur, für alle Java-Programme gleich, sondern für alle Software, die sich dazu bringen lässt, ihre Log-Ausgabe nach stdout zu schreiben und gewisse Mindestanforderungen an das Format einzuhalten. Im Prinzip ließe sich mit named-Pipes auch eine beliebig hard-codierte Log-Datei unterstützen, aber das macht die Dinge nur komplizierter. Wenn dann das Logging-Framework der Software selbst noch Log-Rotation unterstützt, kann das natürlich durcheinandergeraten, wenn etwa nach n geschriebenen Bytes oder m Sekunden die named-pipe geschlossen, umbenannt und eine neue Datei angelegt wird, was je nach Schreibrechten in dem Verzeichnis zu verschiedenen Fehler führt.

Was ist jetzt mit Software, die selbst als Filter fungiert, wo also stdout Teil der Funktionalität ist? Solche Software findet man üblicherweise in Form kleinerer Programme oder Skripte, die nicht unbedingt Log-Dateien schreiben müssen oder in Form von gut ausgetesteter Software, die Teil der Installation ist. Oft kann man hier mit stderr für Log-Ausgaben, in diesem Fall meist für Fehlermeldungen, auskommen. Oder man könnte eine Log-Datei auf der Kommandozeile angeben, was dann auch wieder für den Systemadminstrator leicht zugänglich wäre und auf eine named-pipe umleiten könnte.

Share Button

Systemprogrammierung

So etwas muss man ja heute selten machen, Applikationsentwicklung ist eher die Tätigkeit, mit der man sich herumschlägt, wenn man kundenspezifische „Business-Software“ entwickelt oder anpasst. Bei der Systemprogrammierung schreibt man Software, die direkt auf Betriebssystemfunktionen und Hardware zugreift oder Teile von Betriebssystemen im weiteren Sinn, also nicht unbedingt nur Teile des Linux-Kernels oder Kernelmodule, sondern auch so etwas wie ls, mv oder auch Datenbanken und Webserver.

Aber gelegentlich kommt es doch in Projekten vor, dass man solche Kenntnisse einsetzen muss und dann ist es auch gut, sie zu haben. Für ein Projekt in der Vergangenheit, als es darum ging, Serversoftware für Billingsysteme zu entwickeln, die in C für Solaris geschrieben wurde, mit anderen Komponenten kommunizieren sollte und dann auch noch Performance bringen sollte, die ausreicht, um wenigstens jeweils in 24 Stunden mindestens die Daten zu verarbeiten, die durch die Telefonate innerhalb von 24 Stunden angesammelt wurden, was sich noch alle paar Monate verdoppelte.

Auch um bei Fahrkartenautomaten einer großen Bahngesellschaft die betriebssystemnahe Funktionalität zum Betrieb und zur Wartung von Fahrkartenautomaten zur Verfügung zu stellen, war es erforderlich, sich in diesem Bereich bewegen zu können.

Zur Zeit halte ich eine Vorlesung an einer Fachhochschule (ZHAW) in Zürich über Systemprogrammierung. Deshalb wird hier vielleicht auch gelegentlich einmal der eine oder andere Artikel zu Themen aus dem Gebiet auftauchen.

Die Beispielprogramme, die ich zu dem Thema erstelle, sind als Open-Source-Software in github und unter den Bedingungen der GPL v2 für jeden Interessenten verfügbar.

Share Button

Rounding of Money Amounts

Deutsch

Many numerical calculations deal with amounts of money. It is always nice if these calculations are somewhat correct or if we can at least rest assured that we do not loose money due to such inaccuracies. Off course there are calculations that may legitimately deal with approximations, for example when calculating profits as percentages of the investment (return on investment). For this kind of calculations floating point numbers (double, Float or something like that) come in handy, but off course dealing with the numeric subtleties can be quite a challenge and rounding errors can grow huge if not dealt with properly.

It is often necessary to do calculations with exact amounts. It is quite easy to write something like 3.23 as floating point number, but unfortunately these are internally expressed in binary format (base 2), so the fraction with a power of 10 in the denominator needs to be expressed as a fraction with a power of two in the denominator. We can just give it a try and divide x=323_{10}=101000011_{2} by y=100_{10}=1100100_2, doing the math in base 2 arithmetic. We get something like z=x/y=11.0011101011100001010001111010111000010100011110101\ldots_{2}, more precisely z=11.00\overline{11101011100001010001} or as fraction z=11_2+\frac{11101011100001010001_2}{100_2*(100000000000000000000_2-1_2)} or in base 10 z=3_{10}+\frac{964689_{10}}{4_{10}\cdot1048575_{10}}.

It can be seen that such a harmless number with only two digits after the decimal point ends up having an infinite number of digits after the decimal point. Our usual Double and Float types are usually limited to 64 Bits, so some digits have to be discarded, causing a rounding error. Fortunately this usually works well and the stored number is still shown as 3.23. But working a little bit with these floating point numbers sooner or later results like 3.299999999999 or 3.2300000001 will appear instead of 3.23, even when doing only addition and subtraction. When doing larger sums it might even end up as 3.22 or 3.24. For many applications that is unacceptable.

A simple and often useful solution is to use integral numbers and storing the amounts in cents instead of dollars. Then the rounding problem of pure additions and subtractions is under control and for other operations it might at least become easier to deal with the issue. A common mistake that absolutely needs to be avoided is mixing amountInDollar and amountInCent. In Scala it would be a good idea to use different types to make this distinction, so that such errors can be avoided at compile time. In any case it is very important to avoid such numeric types as int of Java that have a weird and hardly controllable overflow behavior where adding positive numbers can end up negative. How absurd, modular arithmetic is for sure not what we want for our money, it is a little bit too socialistic. 😉 Estimations about the upper bound of money amounts of persons and companies and other organizations are problematic, because there can be inflation and there can be some accumulation of money in somebody’s accounts… Even though databases tend to force us to such assumption, but we can make them really huge. So some languages might end up using something like BigInteger or BigNum or BigInt. Unfortunately Java shows one of its insufficiencies here, which makes quite ugly to use for financial applications, because calculations like a = b + c * d for BigInteger appear like this: a = b.{\rm add}(c.{\rm multiply}(d)). The disadvantage is that the formula cannot be seen at one glance, which leads to errors. In principal this problem can be solved using a preprocessor for Java. Maybe a library doing some kind of RPN-notation would possible, writing code like this:

Calculation calc = new Calculation();
calc.push(b)
calc.push(c)
calc.push(d)
calc.add()
calc.multiply()
a = calc.top()

Those who still know old HP calculators (like HP 25 and HP 67 😉 in the good old days) or Forth might like this, but for most of us this is not really cutting it.

Common and useful is actually the usage of some decimal fixed point type. In Java this is BigDecimal, in Ruby it is LongDecimal.
And example in Ruby:

> sudo gem install long-decimal
Successfully installed long-decimal-1.00.01
1 gem installed
....
> irb
irb(main):001:0> require "long-decimal"
=> true
irb(main):002:0> x = LongDecimal("3.23")
=> LongDecimal(323, 2)
irb(main):003:0> y = LongDecimal("7.68")
=> LongDecimal(768, 2)
irb(main):004:0> z = LongDecimal("3.9291")
=> LongDecimal(39291, 4)
irb(main):005:0> x+y
=> LongDecimal(1091, 2)
irb(main):006:0> (x+y).to_s
=> "10.91"
irb(main):007:0> x+y*z
=> LongDecimal(33405488, 6)
irb(main):008:0> (x+y*z).to_s
=> "33.405488"
irb(main):009:0> 

It is interesting to see that the number of digits remains the same under addition and subtraction if both sides have the same number of digits. But the longer number of digits wins otherwise. During multiplication, division and off course during more complex operations many decimal places can become necessary. It becomes important to do rounding and to do it right and in a controlled way. LongDecimal supports the following rounding modes:

ROUND_UP
Round away from 0.
ROUND_DOWN
Round towards 0.
ROUND_CEILING
Round to more positive, less negative numbers.
ROUND_FLOOR
Round to more negative, less positive numbers.
ROUND_HALF_UP
Round the middle and from above up (away from 0), everything below down (towards 0).
ROUND_HALF_DOWN
Round the middle and from above down (towards 0), everything below up (away from 0).
ROUND_HALF_CEILING
Round from the middle onward towards infinity, otherwise towards negative infinity.
ROUND_HALF_FLOOR
Round up to and including the middle towards negative infinity, otherwise towards infinity.
ROUND_HALF_EVEN
Round the middle in such a way that the last digit becomes even.
ROUND_HALF_ODD
Round the middle in such a way that the last digit becomes odd (will be added to long-decimal in next release).
ROUND_UNNECESSARY
Do not round, just discard trailing 0. If that does not work, raise an exception.

Which of these to use should be decided with domain knowledge in mind. The above example could be continued as follows:

irb(main):035:0> t=(x+y*z)
=> LongDecimal(33405488, 6)
irb(main):036:0> 
irb(main):037:0* t.round_to_scale(2, LongDecimal::ROUND_UP).to_s
=> "33.41"
irb(main):038:0> t.round_to_scale(2, LongDecimal::ROUND_DOWN).to_s
=> "33.40"
irb(main):039:0> t.round_to_scale(2, LongDecimal::ROUND_CEILING).to_s
=> "33.41"
irb(main):040:0> t.round_to_scale(2, LongDecimal::ROUND_FLOOR).to_s
=> "33.40"
irb(main):041:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_UP).to_s
=> "33.41"
irb(main):042:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_DOWN).to_s
=> "33.41"
irb(main):043:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_CEILING).to_s
=> "33.41"
irb(main):044:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_FLOOR).to_s
=> "33.41"
irb(main):045:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_EVEN).to_s
=> "33.41"
irb(main):046:0> t.round_to_scale(2, LongDecimal::ROUND_UNNECESSARY).to_s
ArgumentError: mode ROUND_UNNECESSARY not applicable, remainder 5488 is not zero
        from /usr/local/lib/ruby/gems/1.9.1/gems/long-decimal-1.00.01/lib/long-decimal.rb:507:in `round_to_scale_helper'
        from /usr/local/lib/ruby/gems/1.9.1/gems/long-decimal-1.00.01/lib/long-decimal.rb:858:in `round_to_scale'
        from (irb):46
        from /usr/local/bin/irb:12:in `
' irb(main):047:0>

A specialty is that some countries do not use the coins with one of the smallest unit, like 1 cent in the US. In Switzerland the smallest common coin is 5 Rp (5 cent=0.05 CHF). It might be possible to make the bank do a transfer for amounts not ending in 0 or 5, but usually invoices apply this kind of rounding and avoid such exact amounts that could not possibly be paid in cash. This can be dealt with by multiplying the amount by 20, rounding it to 0 digits after the decimal point and divide it by 20 and round the result to 2 digits after the point. In Ruby there is a better way using an advanced feature of LongDecimal called remainder rounding (using the method round_to_allowed_remainders(…) ). Assuming we want to round a number x with n decimal places in such a way that, 10^n\cdot x belongs to one of the residue classes \overline{0} \mod 10 or \overline{5} \mod 10. In this case we are just talking about the last digit, but the mechanism has been implemented in a more general way allowing any set of allowed residues and even a base other than 10. If 0 is not in the set of allowed residues, it may be unclear how 0 should be rounded and this needs to be actually defined with a parameter. For common practical uses the last digit of 0 is allowed, so things work out of the box:


irb(main):003:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_UP).to_s
=> "33.45"
irb(main):005:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_DOWN).to_s
=> "33.40"
irb(main):006:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_CEILING).to_s
=> "33.45"
irb(main):007:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_FLOOR).to_s
=> "33.40"
irb(main):008:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_UP).to_s
=> "33.40"
irb(main):009:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_DOWN).to_s
=> "33.40"
irb(main):010:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_CEILING).to_s
=> "33.40"
irb(main):011:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_FLOOR).to_s
=> "33.40"

In an finance application the rounding methods should probably be defined for each currency, possible using one formula and some currency specific parameters.

LongDecimal can do even more than that. It is possible to calculate logarithms, exponential functions, square root, cube root all to a desired number of decimal places. The algorithms have been tuned for speed without sacrificing precision.

Share Button

Rundung bei Geldbeträgen

English

Ein Teil der numerischen Berechnungen bezieht sich auf Geldbeträge. Es ist immer ganz schön, wenn diese Berechnungen stimmen oder wenn man zumindest durch solche Ungenauigkeiten kein Geld verliert. Natürlich gibt es Berechnungen, die von ungefähren Zahlwerten ausgehen dürfen, wenn es etwa um Berechnungen von prozentualen Renditen geht. Da können dann auch diese Fließkomma-Zahlen (double, Float oder wie sie auch heißen) zum Einsatz kommen, es muss aber natürlich auf numerische Probleme Rücksicht genommen werden, sonst können sich Rundungsfehler massiv hochschaukeln.

Oft ist es aber notwendig, mit den genauen Beträgen zu rechen. Nun kann man so etwas wie 3.23 sehr schön als Fließkommazahl schreiben, aber leider arbeiten diese Fließkommazahlen intern im Dualsystem und drücken also die Zehntel und Hundertstel in Brüchen mit Zweierpotenzen im Nenner aus. Man kann einmal den Versuch machen x=323_{10}=101000011_{2} durch y=100_{10}=1100100_2 zu teilen, im Dualsystem. Da bekommt man dann z=x/y=11.0011101011100001010001111010111000010100011110101\ldots_{2}, genauer z=11.00\overline{11101011100001010001} oder als Bruch daraus z=11_2+\frac{11101011100001010001_2}{100_2*(100000000000000000000_2-1_2)} oder im Zehnersystem z=3_{10}+\frac{964689_{10}}{4_{10}\cdot1048575_{10}}.

Man sieht also, dass diese unscheinbare Zahl mit nur zwei Stellen nach dem Komma im Dualsystem unendlich viele Stellen nach dem Komma bräuchte. In den üblichen Double oder Float-Typen sind aber nur 64 Bit insgesamt vorgesehen und es werden einige Stellen weggeworfen. Zum Glück funktioniert es meistens und die gespeicherte Zahl wird immer noch als 3.23 angezeigt, aber jeder, der ein bisschen mit diesen Fließkommazahlen hantiert hat, weiß, dass irgendwann einmal etwas in der Art von 3.299999999999 oder 3.2300000001 statt 3.23 herauskommt und dass bei typischen Additions- und Subtraktionsoperationen. Man kann sogar auf 3.22 oder 3.24 kommen, wenn man lange genug herumrechnet. Für viele Applikationen ist das unakzeptabel.

Eine einfache und oft sinnvolle Lösung ist es, mit Ganzzahlen zu rechnen und die Beträge in Cent, Rappen, Pfennigen u.s.w. auszudrücken. Dann ist das Rundungsproblem für reine Additionen und Subtraktionen vollständig gelöst oder zumindest für alle anderen Operationen etwas einfacher handhabbar. Man muss nur in der Software darauf achten, dass man die „Beträge in Cent“ und die „Beträge in Euro“ niemals, wirklich niemals durcheinanderbringt. In Scala würde man verschiedene Typen verwenden, so dass zur compile-Zeit diese Durchmischung unterbunden wird. Wichtig ist natürlich in jedem Fall, dass man nicht so etwas wie int von Java verwendet, wo der Überlauf zu unüberschaubaren Katastrophen führen kann. Und Abschätzungen über die oberen Grenzen des monetären Reichtums von Firmen und Einzelpersonen gezählt in einer potentiell inflationsgefährdeten Währung sind fast immer falsch. Hier zeigt sich, dass Java für Finanzapplikationen schlecht geeignet ist, weil man dann statt a = b + c * d für BigInteger so etwas wie a = b.{\rm add}(c.{\rm multiply}(d)) schreiben muss, was dazu führt, dass man die Formel nicht mehr „sieht“ und deshalb sehr viel mehr Fehler produziert. Eventuell kann man das Problem mit einem Präprozessor lösen oder es mit einer Library, die wenigstens so etwas wie UPN-Notation für die Berechnung ermöglicht, etwas entschärfen. Dann schreibt man etwa so etwas

Calculation calc = new Calculation();
calc.push(b)
calc.push(c)
calc.push(d)
calc.add()
calc.multiply()
a = calc.top()

Wer noch alte HP-Taschenrechner oder Forth kennt, wird das vielleicht mögen, aber für die meisten von uns ist auch das nicht wirklich die Lösung des Problems.

Üblich und sinnvoll ist aber in den meisten Fällen, so ein dezimaler Festkomma-Typ für diesen Anwendungsfall. In Java ist das BigDecimal, in Ruby LongDecimal. Ein Beispiel in Ruby

> sudo gem install long-decimal
Successfully installed long-decimal-1.00.01
1 gem installed
....
> irb
irb(main):001:0> require "long-decimal"
=> true
irb(main):002:0> x = LongDecimal("3.23")
=> LongDecimal(323, 2)
irb(main):003:0> y = LongDecimal("7.68")
=> LongDecimal(768, 2)
irb(main):004:0> z = LongDecimal("3.9291")
=> LongDecimal(39291, 4)
irb(main):005:0> x+y
=> LongDecimal(1091, 2)
irb(main):006:0> (x+y).to_s
=> "10.91"
irb(main):007:0> x+y*z
=> LongDecimal(33405488, 6)
irb(main):008:0> (x+y*z).to_s
=> "33.405488"
irb(main):009:0> 

Interessant ist, dass bei Addition und Subtraktion die Anzahl der benötigten Nachkommastellen gleich bleibt bzw. sich die größere Anzahl von Nachkommastellen durchsetzt. Bei Multiplikation und Division und sowieso bei komplexeren Operationen können aber viele Nachkommastellen entstehen. Da ist es entscheidend, richtig zu runden. LongDecimal kennt die folgenden Rundungsmethoden:

ROUND_UP
Rundet von 0 weg, für positive Zahlen gleich wie ROUND_CEILING
ROUND_DOWN

Rundet zu 0 hin, für positive Zahlen gleich wie ROUND_FLOOR

ROUND_CEILING
Rundet auf, also hin zu größeren, positiveren, weniger negativen Zahlen
ROUND_FLOOR
Rundet ab, also hin zu kleineren, negativeren, weniger positiven Zahlen
ROUND_HALF_UP
Rundet ab der Mitte weg von 0, unterhalb der Mitte zu 0 hin
ROUND_HALF_DOWN
Rundet bis einschließlich der Mitte zur 0 hin, oberhalb der Mitte von der 0 weg.
ROUND_HALF_CEILING
Rundet bis einschließlich der Mitte auf (Richtung unendlich) hin, sonst ab.
ROUND_HALF_FLOOR
Rundet ab der Mitte ab, sonst auf.
ROUND_HALF_EVEN
Rundet die Mitte so, dass dabei die letzte Stelle gerade wird.
ROUND_HALF_ODD
Rundet die Mitte so, dass dabei die letzte Stelle ungerade wird.
ROUND_UNNECESSARY
Rundet gar nicht und wirft eine Exception, wenn die weggerundeten Stellen nicht alles Nullen sind.

Welche man davon anwendet sollte man unbedingt mit den entsprechenden Spezialisten von der „Fachseite“ besprechen oder für den jeweiligen Anwendungsfall herausfinden. Als Fortsetzung vom obigen Beispiel sähe das etwa so aus:

irb(main):035:0> t=(x+y*z)
=> LongDecimal(33405488, 6)
irb(main):036:0> 
irb(main):037:0* t.round_to_scale(2, LongDecimal::ROUND_UP).to_s
=> "33.41"
irb(main):038:0> t.round_to_scale(2, LongDecimal::ROUND_DOWN).to_s
=> "33.40"
irb(main):039:0> t.round_to_scale(2, LongDecimal::ROUND_CEILING).to_s
=> "33.41"
irb(main):040:0> t.round_to_scale(2, LongDecimal::ROUND_FLOOR).to_s
=> "33.40"
irb(main):041:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_UP).to_s
=> "33.41"
irb(main):042:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_DOWN).to_s
=> "33.41"
irb(main):043:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_CEILING).to_s
=> "33.41"
irb(main):044:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_FLOOR).to_s
=> "33.41"
irb(main):045:0> t.round_to_scale(2, LongDecimal::ROUND_HALF_EVEN).to_s
=> "33.41"
irb(main):046:0> t.round_to_scale(2, LongDecimal::ROUND_UNNECESSARY).to_s
ArgumentError: mode ROUND_UNNECESSARY not applicable, remainder 5488 is not zero
        from /usr/local/lib/ruby/gems/1.9.1/gems/long-decimal-1.00.01/lib/long-decimal.rb:507:in `round_to_scale_helper'
        from /usr/local/lib/ruby/gems/1.9.1/gems/long-decimal-1.00.01/lib/long-decimal.rb:858:in `round_to_scale'
        from (irb):46
        from /usr/local/bin/irb:12:in `
' irb(main):047:0>

Eine Besonderheit ist, dass in manchen Ländern die kleinste Münze nicht mehr gebräuchlich ist. In der Schweiz ist zum Beispiel der kleinstmögliche Betrag 5 Rappen (0.05 CHF), nicht 1 Rappen. Nun kann man zwar die Bank dazu bringen, Überweisungen zu machen, deren Endziffer nicht 0 oder 5 ist, aber es ist doch verbreitet, Rechungen auf Vielfache von 5 Rappen zu runden. Man kann das Lösen, indem man den Betrag mit 20 multipliziert, dann auf die gewünschte Art rundet und zum Schluss wieder durch 20 dividiert und das Ergebnis auf 2 Nachkommastellen rundet. In Ruby geht das aber einfacher, weil LongDecimal eine „Restklassenrundung“ kennt. Man kann also sagen, man möchte eine Zahl x mit n dezimalen Nachkommastellen so runden, dass die mit 10^n\cdot x einer der Restklassen \overline{0} \mod 10 oder \overline{5} \mod 10 entspricht. In dem Fall ist es einfach die Endziffer. Man kann eine beliebige Menge von Endziffern vorgeben und sogar die 0 verbieten, wobei dann noch festgelegt werden muss, wie die 0 gerundet werden soll, was die üblichen Rundungsmodi nicht vollständig erklären können. Bei Interesse kann ich darauf noch näher eingehen, es ist aber für diesen praktischen Fall nicht relevant, weil die Endziffer 0 natürlich erlaubt ist. Für diesen praktischen Anwendungsfall funktioniert es also so:


irb(main):003:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_UP).to_s
=> "33.45"
irb(main):005:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_DOWN).to_s
=> "33.40"
irb(main):006:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_CEILING).to_s
=> "33.45"
irb(main):007:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_FLOOR).to_s
=> "33.40"
irb(main):008:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_UP).to_s
=> "33.40"
irb(main):009:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_DOWN).to_s
=> "33.40"
irb(main):010:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_CEILING).to_s
=> "33.40"
irb(main):011:0> t.round_to_allowed_remainders(2, [0, 5], 10, LongDecimal::ROUND_HALF_FLOOR).to_s
=> "33.40"

Man kann nun also in der Finanzapplikation für jede Währung Rundungsmethoden definieren.

LongDecimal kann noch etwas mehr. So ist es möglich, Logarithmen, e-Funktion, Quadratwurzel und Kubikwurzel auf eine gewünschte Anzahl von Nachkommastellen genau zu berechnen und die entsprechenden Algorithmen sind daraufhin optimiert, das Ergebnis möglichst schnell, aber natürlich mit der erforderlichen Genauigkeit zu berechnen.

Share Button